Code Authorization on Brew MP
through Digital Signing

/7 brewmp.

QUALCOMM Incorporated
5775 Morehouse Drive
San Diego, CA. 92121-1714
U.S.A

This documentation was written for use with Brew Mobile Platform, software version 1.0. This document and the Brew Mobile
Platform software described in it are copyrighted, with all rights reserved. This document and the Brew Mobile Platform software
may not be copied, except as otherwise provided in your software license or as expressly permitted in writing by QUALCOMM
Incorporated.

Copyright© 2010 QUALCOMM Incorporated
All Rights Reserved

Not to be used, copied, reproduced in whole or in part, nor its contents revealed in any manner to others without the express written
permission of Qualcomm.

This technical data may be subject to U.S. and international export, re-export or transfer (“export") laws. Diversion contrary to U.S.
and international law is strictly prohibited.

QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries.
Other product and brand names may be trademarks or registered trademarks of their respective owners.

Sample Code Disclaimer:

This QUALCOMM Sample Code Disclaimer applies to the sample code of QUALCOMM Incorporated (“QUALCOMM™) to which it
is attached or in which it is integrated (“Sample Code”). Qualcomm is a trademark of, and may not be used without express written
permission of, QUALCOMM.

Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, QUALCOMM provides the Sample Code on an
"as is" basis, without warranties or conditions of any kind, either express or implied, including, without limitation, any warranties or
conditions of title, non-infringement, merchantability, or fithess for a particular purpose. You are solely responsible for determining
the appropriateness of using the Sample Code and assume any risks associated therewith. PLEASE BE ADVISED THAT
QUALCOMM WILL NOT SUPPORT THE SAMPLE CODE OR TROUBLESHOOT ANY ISSUES THAT MAY ARISE WITH IT.

Limitation of Liability. In no event shall QUALCOMM be liable for any direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or
otherwise) arising in any way out of the use of the Sample Code even if advised of the possibility of such damage.

HT##-VT#H##-### Rev. A
December 06, 2010

7 brewmp.

Code Authorization on Brew MP through Digital Signing

Contents

Mobile APPIICALION SECUFITYooi ittt e e e e e e e e e e aeb e e eeeeas 2
COdE AUTNOTIZATION ...ttt e s e e e s ee s 4
Digital SigNing 0N BreW MP........ ittt a e e e e e e e e e e e e e 7
Signing dynamic MOAUIES........ciii i 7
Signing authorities and SigNatUreS........ooo i 8
Privileges and digital SIgNiNg......ccoooiiiiiiie e 8
TrUSTEA COUR GrOUP S i iiititiiieiiei e e e e ettt e et e e e e e e s bbbt et e e e e e e e e e s e s sannbbnbeeeeeaaaaaaaans 9
EXaMPIE DEPIOYMENTS. ..ottt e e e e e e e e e e s e eeeaaaa s 11
Mobile network operator as certificate authority and mobile service provider as
SIGNING AUENOTTEY ..ttt e e e e e e e e e e e e annnes 11
Mobile network operator as certificate authority and device manufacturer as
SIGNING AUENOTTEY ..ttt e e e e e e e e e e e e annnes 11
Mobile service provider as certificate authority and signing authority.............. 12
Device manufacturer as certificate and signing authority...........ccccccceeeiiniee 12
Licensing vSs. Code AUtNOMIZAtIONoiiiiiiii e 13
PUBIiCc KeY Cryptography e ettt e e e e e e e e e e e e aanes 14
Keys and Certificates iN BreW MP.......occuiiiiiiiiiiiic et 16
Brew MP Signing CertifiCates........ccoiiiiiiiiiiiiiiec et 16
Encoding of Brew MP-SpecifiC EXTENSIONS.uuuiiiiiiiiiaiiiiiiiiie e 19
Securing Private Signing KEYS.. ... i it 20
Protecting the private KeY ... 20
LOTe TN oY (=T €] T 1 o Te TR TR TT TR 20
CertifiCate FEVOCATION. . ..ciiiiii ettt e s e e nnnneee s 21
Mitigating risk with TCGs and privileges........cccuuiiiieiiiiieii e 22
OPEratioNal SECUFITY ..coiiiiiiiie ettt ettt e ettt e e et e e e e e e s e s s bbbb e e eeeeaaaaaeeaaaaanns 23
Configuring a Root Certificate in @ DEVICE..........cviiiiiiiiie e 25
Appendix - Alternatives to Digital Signing........ccccuuiiiiiiiiiiii e 26

7 brewmp.

Code Authorization on Brew MP through Digital Signing
Mobile Application Security

Today, any platform that allows end-users to install applications must defend against malware - code
designed to in some way attack the device, the network, or the end-user. Such code may contain a virus
or a worm, or may attempt to ‘'own' the device, log key strokes, access confidential data, degrade mobile
network performance, generate unintended billing events, and so on.

There are several complimentary approaches to defending against and mitigating the threat posed by
both malware and poorly implemented code. Broadly speaking, there are two approaches. The first
strategy is to control what code may execute on the device in an attempt to preclude malware; the second
is to limit the services or data a given executable may access to constrain the potential damage it may
inflict.

Controlling what code may run

There are several methods to control what runs on a device. A familiar model practiced on most PCs
is virus scanning or blacklisting code that should not be allowed on the device. This approach attempts
to catch and prevent code from running once it has been identified as malware. Virus scanning is by
definition a reactive practice, reliant on continuous and ultimately unbounded updates to detection
mechanisms.

The converse approach is to white-list the code that is permitted to execute on the device. This is most
effectively accomplished through digitally signing code that you trust. If a platform is configured to permit
only the execution of digitally signed code, the user can only install code that has been somehow vetted
to ensure that it is not malware. This paper describes in detail how Brew MP supports and relies upon the
white-listing of code through digital signing.

Constraining code that runs

To mitigate the havoc that malware, or even poorly acting code, may wreak, it is best to limit the capability
of the code to only what is strictly necessary for the code to fulfill its purpose. There are several ways to
control what code may do when it is running. These include memory protection across processes through
virtualization, or sandboxing, which isolates potential malware from critical system components. (Memory
protection is beyond the scope of this paper.) Constraining code is further achieved by restricting

the services and data the code may access by controlling the privileges that the code is granted. For
example, not every application requires access to user data such as the address book or platform
services such as the network.

Control over privileges is much more effective in thwarting bad acting code when privileges are managed
and granted by a party vested in the security of the device. Developers are not incented to constrain

the privileges granted to their applications and attackers seek the greatest capability they can for their
malware. This paper described how code authorization through digital signing on Brew MP provides a
mechanism to control the privileges that any given code is allowed.

Summary

Brew MP is engineered with proactive defenses against viruses and malware, the cornerstone of which
is explicitly authorizing, or white-listing, the code that may execute on the device. This inserts into the

software release process an opportunity and a mechanism for device manufacturers or mobile network
operators to understand, vet, and even verify the code, its origin, and its developer. Code authorization

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 2

7 brewmp.

Code Authorization on Brew MP through Digital Signing

through white-listing means knowing where the code came from before you run it. Effective white-listing
avoids the introduction of anonymous code, which is more likely to be malware.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated

7 brewmp.

Code Authorization on Brew MP through Digital Signing
Code authorization

There are four methods for authorizing code to run on a device:

1. Digitally signing fully dynamic modules

2. Including the static hash of dynamic modules in the boot image
3. Including static (const) modules in the boot image

4. Hard linking modules into the boot image

The last three methods (described more fully in the appendix) are applicable only to code that is finalized
and available at the time of manufacture. Each of these three methods binds the code to the boot image
of the device. For each of these methods, the device manufacture is responsible to determine the
suitability and trustworthiness of the code through their own methods and criteria.

The first method, digital signing, enables loading dynamic code onto a device that is already deployed
commercially. Using digital signing, a device manufacturer may also empower third parties, called signing
authorities, to determine whether code is trusted to run on a device. This paper focuses exclusively on the
capabilities, requirements, and specifications for implementing code authorization on Brew MP.

Signing authorities

A signing authority is a legal entity that determines whether code can be trusted to run on a mobile device
and assumes responsibility for the security of the code. Device manufacturers, mobile network operators,
and other mobile services providers may be signing authorities, and each signing authority is responsible
for setting their own criteria and methods for determining what code may be run on a device. A signing
authority uses digital signatures to authorize code they deem trusted. A given device may be configured
by the manufacturer to support multiple signing authorities.

Signing policies

Mobile network operators, device manufacturers, mobile service providers, and consumers depend upon
signing authorities to practice or enforce a signing policy - the criteria under which they will authorize code
to run on the device. A signing authority's policy can include standards such as:

* The type and degree of code testing they require
* The extent to which they authenticate application developers or publishers
* How they determine which services and data are allowed access to a given application

Some signing authorities authorize only code that their own organization produces, while others authorize
code from a wide range of external sources. Those that sign only their own code (perhaps a device
manufacturer) may rely on their internal development and testing processes for a signing policy. Signing
authorities that authorize code from many external parties typically have a more conservative signing

policy.

Certificate authorities

A certificate authority (CA) is a legal entity that determines which signing authorities are trusted by a
given device. Certificate authorities are expert in the deployment of a Public Key Infrastructure (PKI) and
the secure procedures to store and access private keys. Certificate authority enables signing authorities
through the issuance of signing certificates, which give them the authority and the means to generate
digital signatures for code according to the signing authority's signing policy.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 4

7 brewmp.

Code Authorization on Brew MP through Digital Signing

Device manufacturers determine what certificate authorities (and therefore which signing authorities) are
enabled on a device by installing and configuring a root certificate for one or more certificate authorities
on a device at the time of manufacture. Multiple certificate authorities may be enabled on a device by
including and configuring multiple root certificates.

Authority Root " Manufacturer
iﬁbﬁmam

Ol ®

Root
Carfificate Cartificate
0 0
) |_|

_ BrewMP
Senvice

Device
Fai e =, [

Certificate %@ @ Device

Signing
Authority

Distribution

Unsigmad
TE% Application
@ 1
]

Developers

[

[

Figure 1. Digital Signing Ecosystem -

The certificate authority provides the device manufacturer with a root certificate.

The device manufacturer immutably configures the root certificate into the device image.

The certificate authority issues signing certificate(s) to the signing authority.

Developers submit unsigned code to the signing authorities.

The signing authority issues digital signatures for code that meets the criteria set forth in their
signing policy.

agprwdbE

Relationships

The relationship between a device manufacturer and a signing or certificate authority is most often
contractual in nature. Device manufacturers delegate trust to certificate authorities, who in turn delegate
trust to signing authorities. The criteria for what parties and what code are trusted should be fully
negotiated and understood before a root certificate is embedded in a commercial device.

As mentioned previously, a device manufacturer or mobile network operator may act in the role of a
signing authority. For some code authorization business models, the signing authority and the certificate

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated

7 brewmp.

Code Authorization on Brew MP through Digital Signing

authority may be a single legal entity. As an example, a device manufacturer (or mobile network operator)
may deploy and manage both a certificate management and a code signing operation. In such a scenario,
the distinct activities of each function remain:

 Certificate authority
e Securely manage private root keys
 Provision device manufacturers with root certificates
* Issue signing certificates to signing authorities
* Signing authority
« Determine whether code is trustworthy for execution on a device in accordance with their
signing policy
* Authorize the code through digital signing

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 6

7 brewmp.

Code Authorization on Brew MP through Digital Signing Signing dynamic modules

Digital Signing on Brew MP

By design, Brew MP requires that all dynamic code (applications, extensions, or modules for which

there is no static hash in the boot image) be authorized thorough digital signing in order to execute. This
requirement is the principal control and protection from malware attacks for mobile devices and networks.
It gives device manufacturers (and mobile operators) control over what runs on their devices through
explicit control over what signing authorities are trusted by the device.

Manufacturers ship Brew MP devices with embedded root certificates and those devices will only execute
code that is explicitly trusted by one of these roots. There must be a process in place for determining
what code is trusted to run on a device and a mechanism for digitally signing the code determined to be
trusted.This service is run by a signing authority.

Signing dynamic modules
Most Brew MP applications comprise the following files:

» Application Module (.mod) file - the executable application

* Module Information file (.mif) - includes the privileges an application is granted
» Resource file (.bar) - (optional) contains application resources

 Signature file (.sig)

The .mod, and .mif are together signed to generate the .sig using an application signing key that is
trusted by the root. The .sig file contains the digital signature that Brew MP validates before executing the
application.

There are two types of signatures that Brew MP allows, Code Signatures and Developer Enablement
Signatures.

Code signatures

Code signatures (sometimes called production signatures) are for code that is completed, tested, and
authorized to run on many devices. Code signatures ensure code integrity by enabling the device to
detect any modification of the code. If an application is modified (even 1 bit) after signing, the signature is
no longer valid and Brew MP will not execute the code. Code signatures do not expire and may be run on
any device that has the necessary root certificate configuration.

Developer enablement signatures

Developer Enablement Signatures enable the application developer to execute code for which they

do not have a code signature during the testing phase of development. Instead of being specific to a
single module, developer enablement signatures are tied to a specific device via an available unique
identifier such as the IMEI or ESN. Developer enablement signatures are valid only for a finite amount

of time, typically between 1 and 6 months. With a developer enablement signature issued under a root
certificate that is enabled on a device, you can run any dynamic module. In other words, you need only
one developer enablement signature to execute any application on the device. Unlike code signatures,
developer enablement signatures do not verify the integrity of the code. Instead, they enable a developer
to rapidly test an application (code) during the development process without the need to generate a new
signature after each code change.

Developer enablement signatures for multiple hardware 1Ds may also be generated, and hardware
IDs can be listed individually, as a range, or as a list of ranges. This makes it possible to use one test
signature across many devices, and is especially suited to a team development environment.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 7

7 brewmp.

Code Authorization on Brew MP through Digital Signing Signing authorities and signatures

Signing authorities and signatures

A signing authority may issue code signatures, developer enablement signatures, or both. The signing
policy for code signatures is necessarily different than for that of test signatures.

« For commercial environments, code signatures are typically issued only after the application has
been tested and the signing authority is comfortable that it does not pose a risk to the handset, the
network, or the end user. Because a code signature enables the application to run on most any
device configured with the root certificate under which the signing authority's signing certificate was
issued, code signatures are more difficult to obtain than developer enablement signatures.

« Developer enablement signatures are typically issued to developers without a specific review of
their code. Because the developer enablement signature allows the code to run only on specific
hardware and only for a limited duration, developer enablement signatures are easier to obtain than
code signatures.

Because developer enablement signatures (by design) make so much possible on a given device, it is
important to control and limit their issuance. Signing authorities that provide test enabling services should
strictly limit their issuance to only known and trusted developers.

Privileges and digital signing

In Brew MP, applications require privileges to access services and data through APIs. Digital signing

is the mechanism that protects privileges by guaranteeing that they cannot be undetectably changed
after the application and its resource file (.mif, which contains the privileges), have been signed. In other
words, privileges are granted when the signature is issued. Before granting the requested privileges, the
signing authority typically considers what privileges the code requires given its intended function, applying
the principal of least privilege.

The principle of least privilege

Least privilege is a fundamental security principle specifying that entities (in this case the code intended
to run on a device) are only given enough privilege or ability to accomplish their intended and advertised
task or purpose and no more. Application of this principal helps limit the potential for damage to the
consumer, the device, or the network if the application is malicious or exploited by an attacker. Brew MP
allows the application of this principal by providing a fine-grained mechanism for the granting of privileges.

For example, a developer might submit a simple game application (e.g. bowling) and request privileges
for address book or network access. The signing authority should (according to the principle of least
privilege) reject such a submission, requiring that the developer either justify and demonstrate the need
for such privileges or resubmit their applications without the unnecessary privileges.

Constraining a certificate authority's privileges

In Brew MP, a device manufacturer can decide to constrain the privileges that a root certificate may
confer by configuring the root certificate to only grant certain privileges. These constraints are managed in
the root configuration.

Constraining a signing authority's privileges

A certificate authority can constrain the privileges a signing authority may confer. These constraints are
included in the signing certificate issued that is issued by the certificate authority to the signing authority.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 8

7 brewmp.

Code Authorization on Brew MP through Digital Signing Trusted code groups

What privileges does the code receive?
For an application to be granted a privilege by Brew MP, the privilege must be:

« Included in the MIF that has been digitally signed
« Included in the signing certificate that is issued to the signing authority by the certificate authority
 Authorized in the corresponding root certificate configuration by the device manufacturer

For both a root certificate configuration and a signing certificate, if no list or range of privileges is
specified, the root or signing certificate is assumed to be capable of granting any privilege.

Privileges for extensions

Brew MP supports dynamic code that is not an application or a service and only executes when it is called
by an application. The application's .mif specifies what code is an extension. When the extension is called
and executes, it is granted only the privileges of the code from which it was called.

Configuring privileges
Subsequent chapters provide a more detailed discussion on how to configure privileges in Brew MP
devices and signing certificates.

Trusted code groups

As discussed earlier, digital signatures in Brew MP allow for a single certificate authority to support and
enable multiple signing authorities through the issuance of signing certificates. Similar to constraining
what privileges a signing authority may allow, the certificate authority may constrain the devices for which
a signing authority may authorize code through the use of trusted code groups (TCGS).

By design, a TCG is a unique identifier. The most familiar use of a TCG is to indicate a specific mobile
network operator or mobile service provider.

Example - TCG as carrier identifier

Devices shipped by a mobile network operator may include a certificate authority's root certificate
configured for a single TCG. (In this case, the TCG is sometimes referred to as a Carrier ID.) In the
simplest case, that same mobile network operator may have contracted with one signing authority, whose
signing certificate may be similarly constrained (by the certificate authority upon issuance) to a single
TCG. Thus the signing authority has only been delegated the ability to authorize code that executes on
the devices of that mobile network operator.

Example - TCG as service provider identifier

TCGs can be used to identify and independently authorize a mobile service provider (e.g. an application

aggregator and distributor). Such providers may choose to function as their own signing authority under

their own TCG. If a mobile network operator decides to enable the service provider, they do so by having
their devices configured with the necessary root certificate with the service providers TCG.

What TCGs are authorized on a Brew MP device?

For an application to run on a Brew MP device, one of the TCGs in the signing certificate must be listed in
the corresponding root certificate configuration on the device.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 9

7 brewmp.

Code Authorization on Brew MP through Digital Signing Trusted code groups

The manufacturer can configure a device to be globally constrained to a set of TCGs. These devices will
only run code where the globally configured TCG in the signing certificate is listed in the corresponding
root certificate configuration

Configuring TCG's

Subsequent chapters present a more detailed discussion on how to configure TCGs in Brew MP devices
and signing certificates.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 10

7 brewmp.

Code Authorization on Brew MP through Digital Signing Mobile
network operator as certificate authority and mobile service provider as signing authority

Example Deployments

Business requirements and relationships largely dictate how a dynamic application ecosystem is
deployed, including which parties fulfill the role of certificate authority and signing authority. Below we
detail several of the possible permutations.

As you read through each, keep in mind that Brew MP devices may be configured with multiple root
certificates, and that a single certificate authority might enable multiple signing authorities. For these
reasons, the examples below are not mutually exclusive. They could all be enabled on a single Brew MP
device if the business required it.

Mobile network operator as certificate authority and mobile service
provider as signing authority

The mobile network operator often assumes fundamental responsibility for the application security of
devices operating on their network, so a mobile network operator is a natural owner of the root certificate.
Acting as the certificate authority allows them to set policy and directly manage the delegation of
proscribed signing authorities through the issuance of signing certificates.

The mobile network operator may then determine what sources of dynamic applications to make available
to their subscribers. They may elect to partner with a mobile service provider that aggregates, vends,

and downloads applications to mobile devices. In this case, the mobile service provider might act as

the signing authority, running the signing operation according to an agreed signing policy. For such

an arrangement, there is typically some understanding between the mobile network operator and the
mobile service provider regarding the level of testing and vetting necessary to prevent the introduction of
malware or misbehaving code. This arrangement is often manifested in a contract, but most certainly in
the signing policy of the mobile service provider.

In practice, a mobile network operator provides its root certificate to a device manufacturer along with
their requirements for how it should be configured on the device. The mobile network operator also issues
one or more signing certificate(s) to the mobile service provider. Application developers and publishers
submit their code to the mobile service provider signing authority, which subjects it to whatever testing,
developer authentication, or other processes their signing policy requires. The mobile service provider
then generates signatures for and makes available to subscribers that code which is determined to be
trustworthy.

The signing policy for such code or application aggregation service is likely to be quite rigorous and might
include strict vetting and real-time authentication of developers, an extensive testing and review process.

Furthermore, due to a high volume of signing activity, the process and implementation for secure signing

operations may be significant.

The mobile network operator as certificate authority may enable multiple service providers as signing
authorities under this model.

Mobile network operator as certificate authority and device

manufacturer as signing authority
Similar to the previous example, the mobile network operator as certificate authority might issue a signing
certificate to the device manufacturer, giving them the signing authority role. This might enable the device

manufacturer to provide post-production updates of their dynamic applications without needing to become
a certificate authority themselves.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 11

7 brewmp.

Code Authorization on Brew MP through Digital Signing Mobile service provider as certificate authority and signing authority

Mobile service provider as certificate authority and signing authority

For devices that are not manufactured for a specific mobile network operator, sometimes called retail
devices, a party other than the manufacturer or mobile network operator may act as a certificate authority
and signing authority.

Such a mobile service provider would provide their root along with configuration requirements to the
device manufacturer, issue their own signing certificates, establish signing operations, and establish a
signing policy, likely with the input and consent of the device manufacturer. Device manufacturers only
enable such service providers if it makes their devices more valuable to consumers, acceptably secure to
mobile network operators, and cost effective relative to their own device warranty and support obligations.

Device manufacturer as certificate and signing authority

Perhaps the most straight forward deployment of dynamic code authorization through digital signing
is that of a solution entirely owned and operated by the device manufacturer. This is also a common
deployment scenario because device manufacturers create many dynamic applications in the course
of handset development, and a significant portion of the Brew MP platform is also dynamic. While
device manufacturers have other options with less operational overhead to authorize this code (see
the appendix), digital signing is a flexible solution some may prefer. Most notably, it allows device
manufacturers to update dynamic applications without needing to re-image the entire device.

In this example, the device manufacturer acts as the certificate authority, generating their own root
keys and certificate and issuing signing certificates under their root. Root certificate policies are both
determined and configured into the boot image by the manufacturer.

The manufacturer also acts as the signing authority, establishing signing operations and determining
the signing policy for what code may be digitally signed under the root. The signing policy is likely tied to
the manufacturer's already existing quality and release practices. If the device manufacturer is signing
only their own code and signing activity is relatively infrequent (perhaps weekly), signing operations
themselves may be small, and might be largely automated under the right circumstances.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 12

7 brewmp.

Code Authorization on Brew MP through Digital Signing Device manufacturer as certificate and signing authority

Licensing vs. Code Authorization

As arule, licensing and code authorization through digital signing are distinct systems because business
drivers, stakeholders, and implementers of a licensing solution are most often different from those of
code authorization. Licensing manages the question of whether the user is permitted to run the code (e.g.
have they paid for the right), while code authorization indicates whether the code is trusted to run on the
device. This separation is a best practice we recommend but there is overlap between a licensing and
code authorization though digital signing implementation detailed below.

Signing the License System Designation

Licensing and signing overlap in that digital signatures may be used to authenticate the license system
designation for a given piece of code. While the implementation and enforcement of the license is outside
of the signature verification mechanism, the signature prevents the unauthorized association of the code
with an alternative (perhaps more permissive or less secure) licensing solution.

Signing code with no license

Not all code requires a license, so Brew MP allows you to designate code as not requiring a license
using mif attributes. To execute the code, a mif need only be appropriately signed under a root certificate
configured on the device.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 13

7 brewmp.

Code Authorization on Brew MP through Digital Signing Device manufacturer as certificate and signing authority

Public Key Cryptography

There are two types of keys and certificates necessary to enable the digital signing of dynamic modules
on Brew MP devices.

* Root Keys and Certificates
 :Signing Keys and Certificates

This section begins with an overview of public key cryptography, and later describes both types and how
they are used.

Digital signing in Brew MP is based on public key (or asymmetric) cryptography. Portions of this chapter
require some knowledge of public key cryptography and public key infrastructure (PKI). We provide only a
very high level overview below; for a deeper understanding, please consult other sources.

Key pairs
In a public key cryptography-based digital signing scheme, keys are generated in exclusive pairs:

« A private key used to generate signatures
» A public key used to verify signatures

An attribute of public key cryptography is that, given adequate key lengths, one cannot deduce the private
key from knowledge of its associated public key, the signature, and the digital object that was signed. This
attribute is the basis of non-repudiation.

Certificates

A certificate contains a public key along with several attributes, which together are signed to guarantee
the certificate's integrity and to indicate that it is trusted by the signer. The purpose of this certificate is to
bind an identity (subject) to a public key.

Public key hierarchy

A public key hierarchy comprises two or more key pairs and a mapping of which keys are trusted by other
keys. At the top of a public key hierarchy is a root key pair. Below the root are one or more subordinate
key pairs that are trusted by the root. Subordinate keys may similarly have their own subordinate key
pairs that they trust.

Root certificates

A public root key is intended to be shared to enable the verification of signatures. It is shared within a root
certificate, which is the public root key signed by the private root key. Thus, the public root key may be
used to validate itself. In Brew MP, root certificates are included and configured immutably into the device
image.

Subordinate Certificates

The root is the final authority on what keys are trusted. One confers a root's trust by signing the public
key of a subordinate key pair along with other data which details how the key is intended to be used. This
creates a certificate for that subordinate key that anyone with the public root key may then validate.

Subordinate certificates can in turn issue certificates (sign the public key) for keys they deem trustworthy.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 14

7 brewmp.

Code Authorization on Brew MP through Digital Signing Device manufacturer as certificate and signing authority

Chain of trust

Thus, a public key hierarchy represents one or more chains of trust in which holders of the root certificate
can validate the signature or certificate issued by any of their subordinates.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 15

7 brewmp.

Code Authorization on Brew MP through Digital Signing Brew MP signing certificates

Keys and Certificates in Brew MP

The following sections describe the Brew MP-specific requirements and specifications for keys and
certificates for the digital signing of dynamic modules.

Brew MP signing certificates

Signing authorities generate one or more signing key pairs, and use these keys to issue digital signatures.
After generating a signing key pair, they request that a certificate authority issue a signing certificate
under their root. Certificate authorities issue the resultant signing certificate by signing the signing
authority's public signing key with the private root key.

This section provides an overview of the attributes of Brew MP Signing Certificates. Specific ASN.1
definitions and encoding requirements are detailed in a later chapter.

Signing certificate capabilities

As discussed previously, there are two types of signatures that a signing authority may issue, code
signatures and developer enablement signatures. The difference is manifested in their Brew MP
capabilities listed below.

* No Signed Files - this capability allows for the creation of a digital signature that does not require a
list of files that must be signed. Without this capability a list of signed files must be specified.

* No Date - this capability allows for the creation of a digital signature that has no date restrictions.
Without this capability, a date range must be specified.

* No HW SN - this capability allows for the creation of a digital signature that has no binding to a
particular set of hardware serial numbers. Without this capability, HW SNs must be specified.

As expressed in the following table, code signing certificates require a list of signed files but no date
restrictions and no hardware serial numbers while developer enablement signing certificates require date
restrictions and hardware serial numbers but no list of signed files.

Certificate List of Files Date Restriction HW SN
Code Signing Yes No No
Developer Enablement | No Yes Yes

What capabilities are authorized?

As with privileges and TCGs, capabilities must be explicitly allowed in the signing certificate and any

intermediate certificates that chain to a root configured on the device. For a capability to be permitted
on a Brew MP device, every certificate in the chain up to the root certificate must explicitly allow that

capability.

In Brew MP 1.0 the root by itself has no restrictions on what capabilities it can sign for. The ability for a
device manufacturer to constrain a given root's capabilities through configuration may be added in future
releases of Brew MP.

Required Brew MP signing certificate standard extensions

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 16

7 brewmp.

Code Authorization on Brew MP through Digital Signing Brew MP signing certificates

All Brew MP Signing Certificates require the following standard extensions:

« basicConstraints (OID id-ce 19) where the only necessary field is the CA Boolean field, which
should be set to FALSE
« extKeyUsage (OID id-ce 37)
* Where the only necessary field is apiOneCodeSigning (OID 1.3.6.1.4.1.1449.9.4.1.20)
granting the ability to sign for Brew MP and BREW Client 4.x devices.

Required Brew MP signing certificate proprietary extensions
All Brew MP Signing Certificates require the following Qualcomm-defined extensions:

 trustedCodeGroups (OID 1.3.6.1.4.1.1449.94.1.10)

« With the value constrained to the TCGs for which the Signing Authority may authorize code.
e capabilities (OID 1.3.6.1.4.1.1449.9.4.1.12) with the values:

« For a code signing certificate: NoDate and NoHWSN

» For a developer enablement certificate: NoSignedFiles

Optional Brew MP signing certificate proprietary extensions

Brew MP Signing Certificates may include the following Qualcomm defined extensions:

* privileges (OID 1.3.6.1.4.1.1449.9.4.1.11)
< With the value constrained to the privileges that the Signing Authority may authorize.
» Not including this extension implies that the signing certificate may authorize any privilege.

Below is an example of both a code signing certificate and a developer enablement signing certificate.
The primary difference between the two can be seen in their capabilities extension.

Example Brew MP code signing certificate

Below is an example of a Code Signing Certificate suitable for digitally signing code on a Brew MP
device. It follows the structure of an X.509 v3 digital certificate.

Field Value

Version X

Serial Number XXXXXXXXXX

Signature Algorithm sha256WithRSAEnNcryption

Issuer 0=CA_NAME, Inc.
cn=CA_NAME Signing Root

Validity notBefore = XX/XX/XXXX
notAfter = XX/XX/XXXX

Subject 0=SA_NAME, Inc.
cn=SA_NAME Code Signing

Public Key Info Algorithm = RSA Modulus = 1024 bits (or
2048 bits) Exponent = 3 (FO)

Extensions | OID Criticality

basicConstrai {id-ce 19} TRUE cA = FALSE
pathLenConstraint = n/a

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 17

7 brewmp.

Code Authorization on Brew MP through Digital Signing

Brew MP signing certificates

extKeyUsage| {id-ce 37} TRUE apiOneCodeSigning
{1.3.6.1.4.1.1449.9.4.1.20}

trustedCode({1.3.6.1.4.1.1449.9.4.1.10} TRUE MinTCG-maxTCG

capabilities |{1.3.6.1.4.1.1449.9.4.1.12} TRUE No Date, No HW SNs

Example Brew MP developer enablement signing certificate

Below is an example of a signing certificate suitable for creating developer enablement signatures for a

Brew MP device. It follows the structure of an X.509 v3 digital certificate.

Field Value

Version X

Serial Number XXXXXXXXXX
Signature Algorithm shalWithRSAEncryption

Issuer 0=CA_NAME, Inc.
cn=CA_NAME Signing Root
Validity notBefore = XX/XX/XXXX
notAfter = XX/XX/XXXX
Subject 0=SA_NAME, Inc.

cn=SA_NAME Developer
Enablement Signing

Public Key Info

Algorithm = RSA Modulus =
1024 bits Exponent = 3 (F0)

Extensions OID Criticality

basicConstraints {id-ce 19} TRUE cA = FALSE
pathLenConstraint = n/a

extKeyUsage {id-ce 37} TRUE apiOneCodeSigning
{1.3.6.1.4.1.1449.9.4.1.20}

trustedCodeGroups | {1.3.6.1.4.1.1449.9.4.1.10} | TRUE No TCGs

capabilities {1.3.6.1.4.1.1449.9.4.1.12} | TRUE No File List

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated

18

7 brewmp.

Code Authorization on Brew MP through Digital Signing Brew MP signing certificates

Encoding of Brew MP-Specific Extensions

Brew MP Signing Certificates include Qualcomm-defined X.509 extensions, as described in earlier
chapters. This section describes the coding and ASN.1 definitions for each.

Privileges

The privileges (OID 1.3.6.1.4.1.1449.9.4.1.11) extension is encoded using 32-bit unsigned integers, in
little-endian format, in a structure defined in pseudo C as follows:

typedef unsigned int uint32 //32 bit unsigned integer
typedef uint32 Privilege;

typedef structure Privil egeRange {
Privilege |o;
Privil ege hi;

} Privil egeRange;

typedef structure EncodedPrivil eges {
ui nt 32 nbr O Ranges;
Privil egeRange i dRanges[]; //optional array with 'nbrOf Ranges' entries
Privilege singlelds[]; //optional array

} EncodedPri vi |l eges;

Trusted code groups

The trustedCodeGroups (OID 1.3.6.1.4.1.1449.94.1.10) extension is encoded using 32-bit unsigned
integers, in little-endian format, in a structure defined in pseudo C as follows:

typedef unsigned int uint32 //32 bit unsigned integer
typedef uint32 Tcg;

typedef structure TcgRange {
Tcg | o;

Tcg hi;

} TcgRange;

typedef structure EncodedTcgs {
ui nt 32 nbr O Ranges;
TcgRange i dRanges[]; //optional array with 'nbrOf Ranges' entries
Tcg singlelds[]; //optional array

} EncodedTcgs;

Capabilities

The capabilities (OID 1.3.6.1.4.1.1449.9.4.1.12) extension is encoded as a DER bit string with the
following ASN.1 definition:

api OneCapabilities ::= BIT STRI NG
noSi gnedFi l es (0),

noDate (1),

noHwWSn (2)

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 19

7 brewmp.

Code Authorization on Brew MP through Digital Signing Protecting the private key

Securing Private Signing Keys

A signing authority has one or more key pairs that they use for the actual signing of applications. The
private keys of those pairs must be kept confidential, or the whole signing operation can be compromised.

The practice and protection needed are similar to those for any public key operation, such as an SSL
server or other code signing servers. This documentation describes only the particular characteristics for
Brew MP signing and makes some suggestions about operational security. It is not a definitive step-by-
step guide that, if followed, guarantees operational security. Those operating a signing authority should
either have the necessary expertise to keep it secure, or obtain that expertise for hire.

Protecting the private key

There are a number of ways to manage the security of a private key. These include operational security
on the server as well as enforcement mechanisms on the device. We begin by describing the Brew MP
device characteristics that may not be modified by a signing authority.

No device enforcement of certificate expiration

Brew MP devices do not check the expiration dates of signing certificates or any certificate in the chain.
For reasons of usability, the assumption is that once an application is signed, it is authorized by the
signing authority to run forever. (This is the case unless the application is subsequently disabled or
revoked by a kill switch mechanism, as discussed below.) The consumer has purchased the application
and, baring a limit imposed by the licensing system, their ability to execute it does not expire. End-users
need never reconnect to the server in order to get the same application with an updated signature.
(Where counter signing is employed, there may be some expiration checking as described later.)

As discussed earlier, in monetized application distribution services, there may be an expiration of the
license to run the application, but that is handled by the license system, not the signing system.

Kill Switch

Some Brew MP-based application distribution solutions provide a kill switch (or application recall
mechanism) that can be used to stop an application found to be malicious from running. This too is
distinct from code signing.

Implications of a compromised private key

Because Brew MP devices do not enforce expiration dates, once a private key is captured (known)

by an attacker, they may use it to issue signing certificates or generate signatures for any code they

like. Furthermore, the devices deployed with the corresponding root certificates are forever vulnerable
unless there is some other mechanism to prevent or remediate such an event. The mechanism Brew MP
supports to mitigate this risk is countersigning.

Countersigning

Brew MP supports countersigning to respond to the compromise of a certificate authority's private root
key or a signing authority's private signing key. Manufacturers may configure Brew MP devices to require
that every digital signature also be countersigned by a second signing authority. This configuration
requires the inclusion and association of another root certificate, that of the countersigning service, in the

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 20

7 brewmp.

Code Authorization on Brew MP through Digital Signing Certificate revocation

compiled Brew MP image on the device. Unless both signatures are present and valid, the applications
signed under roots that require countersignatures will not be executed.

With countersigning in place, in order to sign unauthorized code, an attacker would need either
knowledge of the signing (or certificate) authority's private key and undetected access to the counter
signing service or knowledge of both the signing (or certificate) authority's private key and the
countersigning authority's private key.

Countersignature verification on the device

Roots that require countersigning along with the countersigning root certificate are configured and
associated with one another in the device image by the manufacturer. Countersignature verification is
performed when signature verification occurs, before an application is installed and before it is loaded into
RAM for execution.

Countersigning operations

Countersignatures are typically issued at the same time the first signature is generated by accessing a
countersigning service through an IP connection.

« First, the local signing authority's private signing key is used to generate a signature.

« The resultant signature is then sent to the countersigning service, which validates the signature, the
signing key, and the expiration date of the signing certificate.

« If each is valid, the countersigning service generates and returns a countersignature appended to
and encompassing the original signature.

The countersignature format is an IETF-standard time stamp, so any time stamp server compliant with
the IETF standard can be used to generate these countersignatures, so long as it verifies liveness and
correctness and monitors for revocation.

The principle of countersigning is to double a potential attacker's work. In order to enable otherwise
unauthorized code to run on a device, they must successfully attack both operations, and capture private
keys from each. To maximize the security benefit, and reduce the opportunity for a successful insider
attack, the countersigner should be in a wholly separate organization or company and geographically
removed from the signing authority.

Countersigning log verification

Signing authorities are advised to check their own signing log against the countersigning log. Generated
countersignatures that do not correspond to signatures that the signing authority generated, are an
indication that the signing key or the counte signing service has been compromised. In such a case, the
counter signingservice should stop signing against the key in question.

Certificate revocation

Certificate revocation is a common response when a key is compromised. For reasons of usability, Brew
MP does not currently support a Certificate Revocation Lists (CRLs) or Online Certificate Status Protocol
(OCSP) to monitor for compromised keys. CRLs and OCSP require periodic connections back to the
server to refresh the list of compromised keys. CRLs and OCSP deployments are subject to a class

of attacks that countersigning avoids - malicious applications that prevent access to updated CRLs.
Additionally, though mobile phones are usually connected, they may be out of coverage, so requiring a
real-time verification of key validity is problematic.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 21

7 brewmp.

Code Authorization on Brew MP through Digital Signing Mitigating risk with TCGs and privileges

For revocation-dependent signature verification, the inability to update a CRL leaves two undesirable
options:

* Run code with no regard for the relative freshness of the CRL, which is akin to having no revocation
check at all.

« Prevent any digitally signed code from executing, thus degrading and potentially bricking the phone
in the event of the above attack or prolonged spells with no data connectivity.

Today, Brew MP supports countersigning to manage the compromised key scenario. A future version of
Brew MP may support OCSP or CRLs.

Mitigating risk with TCGs and privileges

Brew MP supports delegating privileges and trusted code groups. Signing certificates can be created
so they are only able to sign for the privilege they require and the code groups they are intended to
authorize. This constrains an attack that results from a compromised private key to only those devices
that support the TCG(s) authorized by the signing certificate and limits attacker access to only those
privileges granted to the signing certificate.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 22

7 brewmp.

Code Authorization on Brew MP through Digital Signing Mitigating risk with TCGs and privileges

Operational Security

There are a number of industry best practices to employ in the protection of the private signing keys.
The following are only high level suggestions for how to secure a private signing key. The list below is
not exhaustive, nor is it intended as a substitute for having the necessary security expertise to securely
deploy a public key infrastructure.

Private root key vs. private signing key security

The nature of private root keys is such that they should be accessed infrequently, only to issue
subordinate signing certificates. This is by design and because a compromised private root key forever
marginalizes physical security for all the devices that were shipped with its corresponding root certificate.
The physical and procedural security for private root keys should be the best possible. The cost and
inconvenience of stringent security measures are outweighed by the results of a compromise and
manageable by virtue of the infrequency of interactions requiring the private root key.

Conversely, day to day signing operations necessitate that private signing keys be more frequently
accessed to generate the necessary signatures. For this reason, signing certificates are given finite life
spans (typically less than 2 years) to mitigate any consequences resulting from their compromise. That
said, as much operational security as possible should be implemented around signing operations and the
way in which private keys are stored, accessed, and used in the issuance of digital signatures.

Store private keys in a hardware token

Tamper-resistant hardware tokens are helpful in the secure storage of private keys in that they never
allow the key to be removed. They support only the following operations

* Input of key data
« Encryption or signature generation within the token

The keys in such tokens may never be copied by an attacker, even if the attacker has access to the host
in which the token is installed. The only way to steal the key is to physically take it within the token. Note
however that if an attacker has overrun the host in which the token is installed, they can sign apps until
they are discovered and locked out.

Keep private keys offline

Private keys can be stored on a stand-alone system which is not connected to a network. For example,
signing operations could take place on an isolated system in a secured facility. Code deemed trustworthy
enough to be signed might be physically brought into the secure signing room on removable storage such
as a USB Flash drive. (Note that for operations that leverage countersigning, a network connection may
be unavoidable.)

Operational security

Good operational security is a must in all cases, and the hosts used for signing should be well managed.
For example, web browsers and wireless modems should be disabled. Passwords that protect against
access to the private key for signing operations should be long, strong pass phrases. Only a known and
limited number of people should have access to the signing operations. Auditable signing procedures,
records of signing activity, and access to the signing facility are absolutely required.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 23

7 brewmp.

Code Authorization on Brew MP through Digital Signing Mitigating risk with TCGs and privileges

Digital signing environments

When considering digital signing for devices, there are two distinct environments with different
requirements for the signing services that serve them and different requirements for the handling of root
keys and signing keys.

» Commercial Device Environments - for devices to be delivered to retailers, consumers, or
operators for use by end-users running commercial software.

» Device Development Environments - wherein a manufacturer is developing, building, and testing
pre-commercial releases of the device software.

Commercial device environments

For signing in commercial device environments, it is critical that the confidentiality of the private root
key and private signing keys be maintained, and that signing operations be strictly controlled to prevent
the signing of code not intentionally approved by the signing authority. Commercial environments
require that the confidentiality and control of private keys be maintained from the moment they
are generated.

Device development environments

In a device development environment, where the current device image is not intended to be shipped in
commercial handsets, device manufacturers are able to operate a less secure signing solution with little
or no control of private keys and signature generation. In these device development environments, there
is little or no concern about the threat of malware or what code is permitted to run on these devices. For
this reason, there is no need to implement strong controls around use of the Device Root Private Key or
the Signing Certificates in such an environment.

Reasonable care should be taken to prevent these pre-commercial builds including pre-commercial root
certificates from being used to re-flash devices already in the field.

Common sighing deployment across environments

Because the operational security and private key management requirements are higher for a commercial
device environment than for a device development environment, it is practical to use a commercial
signing solution for a device development environment. However, it is not practical to extend a device
development signing solution into a commercial deployment.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 24

7 brewmp.

Code Authorization on Brew MP through Digital Signing Mitigating risk with TCGs and privileges

Configuring a Root Certificate in a Device

To include their own root certificate in a device image, a manufacturer embeds the root in
OEMCodeSigConfig.c.

To include another signing authority's root certificates, the device manufacturer must create another code
signature configuration (e.g.MNOCodeSigConfig.c or SACodeSigConfig.c) and create an entry for the
new configuration in OEMCodeSigConfigFactory.c.

Detailed instructions for how to modify or add a code signature configuration can be found
inlCodeSigConfig.h and ICodeSigConfigFactory.h.

To quickly enable a device manufacturer to run dynamic code in a development environment, the Brew
MP Code Signing Kit includes a Non-Commercial Sample Root configuration that may be easily dropped
into a device image.

When including a root certificate in a Brew MP device build, there are several configurations that may be
made.

Configuring root certificate privileges and TCGs

To configure which privileges and TCGs a root certificate may authorize, you must explicitly list the
privileges, individually or as ranges. More details can be found in ICodeSigConfig.h.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 25

7 brewmp.

Code Authorization on Brew MP through Digital Signing Mitigating risk with TCGs and privileges

Appendix - Alternatives to Digital Signing

There are three alternatives to digital signing available to device manufacturers for authorizing code to run
on a Brew MP device. These methods rely upon explicit inclusion in the boot image, and therefore may
not be used to load applications not known at the time of manufacture.

Including the static hash of dynamically loaded modules

For modules that are finalized when the device image is being built, the static hash of a dynamic module
can be included in the boot image. The dynamic module remains in the EFS, and when it is invoked,

a hash of the module is compared to that which was included in the boot image. If the hashes match,
Brew MP executes the module. These applications are secure from modification, but do not need to

be statically linked and validated at compile time. This approach gives device manufacturers a means

of shipping dynamic modules in a device without establishing their own root certificate and signing
operations.

Modules loaded this way may also be upgraded (or overridden) by versions that have a valid digital
signature associated with them. This ability is available only through a signing authority whose root
certificate is included in the device image.

Including static (const) modules in the boot image

Including static (const) modules in the boot image presumes that the module is finalized prior to device
manufacture. In this case, images of the .mif and .mod are hard-linked into the boot image. They are,
therefore, always loaded into RAM. Additionally, when the module is invoked, it is copied into RAM a
second time where it then executes as a typical module.

Unlike dynamic modules, static (or const) modules remain in memory even when they are not running.
Static modules can be upgraded by versions with digital signatures; however, the original module always
persists in RAM.

Hard linked modules (static extensions) in the boot image

You may also hard-link a module into the boot image. In this case, however, the code is effectively no
longer a module. It may have BREW-style interfaces, but there is no mif. This is sometimes referred to as
a static extension. The code is always in RAM, just as the whole boot image is always in RAM. Unlike the
other options, static extensions may never be overridden by new dynamic modules.

Comparing the methods of code authorization
Of the four code authorization options, two are for dynamic modules stored in the EFS:

« Digital signing a fully dynamic module
* Including the static hash of a dynamic module in the boot image

Two options imply static code written entirely to the boot image:

* Including static (const) modules in the boot image
» Hard-linking modules into the boot image
Options for dynamic modules

Dynamic signing is the most flexible method of code authorization, giving the device manufacturer,
operator, or other signing authority a mechanism for updating devices after they have been shipped.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 26

7 brewmp.

Code Authorization on Brew MP through Digital Signing

Mitigating risk with TCGs and privileges

It is the only method that allows for changes to an application without the need to recompile the boot

image. Digital signing does, however, require that a signing authority undertake the overhead and effort

necessary for securely building and maintaining a public key hierarchy and signing operation.

RAM Usage Module can May be May Be Requires
be Upgraded? | Factory Loaded after Certificate/
Loaded Manufacture Signing
Authority
Signing Module is only [Yes, replacing | Yes Yes Yes
Dynamic in RAM when it | the previous
Modules is executing. version in the
EFS
Including the | Moduleis only | Yes, with a Yes No No
Static Hash in RAM when it | signed dynamic
of a Dynamic | is executing. module
Module replacing
the previous
version in the
EFS.
Including Module is Yes, with a Yes No No
Static (Const) | always in RAM. | sighed dynamic
Modules A second module. The
instance is previous
created in version remains
RAM when loaded in RAM.
the module is
invoked.
Hard Linked Module is No* Yes No No
Modules always in RAM

* May be upgraded only through class ID override

Including the static hash of a dynamic module in the boot image is a good option for a device
manufacturer who prefers not to be a signing authority. If there is another signing party (such as the
operator), to act as signing authority on the device in order to load additional applications, the device

manufacturer may be able to distribute upgrades of their own statically hashed applications through that
signing authority.

Options for static code
Including static (or const) modules in the boot image is the worst option for consumption of resources. Not

only does an inactive module consume RAM, but upon invocation, a second copy of the module is loaded
into RAM.

The hard-linking of code into the boot image is not as RAM-intensive as the static (const) module
option, but it has other drawbacks. It does not enable upgrade, regardless of the availability of a signing
authority's root certificate on the device. Further, because it may not have a .mif, it may only be an
extension, unable to register for events or naotifications by itself.

Qualcomm Confidential and Proprietary | © 2010 QUALCOMM Incorporated 27

	Mobile Application Security
	Code authorization
	Digital Signing on Brew MP
	Signing dynamic modules
	Signing authorities and signatures
	Privileges and digital signing
	Trusted code groups

	Example Deployments
	Mobile network operator as certificate authority and mobile service provider as signing authority
	Mobile network operator as certificate authority and device manufacturer as signing authority
	Mobile service provider as certificate authority and signing authority
	Device manufacturer as certificate and signing authority

	Licensing vs. Code Authorization
	Public Key Cryptography
	Keys and Certificates in Brew MP
	Brew MP signing certificates

	Encoding of Brew MP-Specific Extensions
	Securing Private Signing Keys
	Protecting the private key
	Countersigning
	Certificate revocation
	Mitigating risk with TCGs and privileges

	Operational Security
	Configuring a Root Certificate in a Device
	Appendix - Alternatives to Digital Signing

